Simulations and human cadaver head studies to identify optimal acoustic receiver locations for minimally invasive photoacoustic-guided neurosurgery
Real-time intraoperative guidance during minimally invasive neurosurgical procedures (e.g., endonasal transsphenoidal surgery) is often limited to endoscopy and CT-guided image navigation, which can be suboptimal at locating underlying blood vessels and nerves. Accidental damage to these critical structures can have severe surgical complications, including patient blindness and death. Photoacoustic image guidance was previously proposed as a method to prevent accidental injury. While the proposed technique remains promising, the original light delivery and sound reception components of this technology require alterations to make the technique suitable for patient use. This paper presents simulation and experimental studies performed with both an intact human skull (which was cleaned from tissue attachments) and a complete human cadaver head (with contents and surrounding tissue intact) in order to investigate optimal locations for ultrasound probe placement during photoacoustic imaging and to test the feasibility of a modified light delivery design.