Three-dimensional (3D) imaging of lipids in skin tissues with infrared matrix-assisted laser desorption electrospray ionization (MALDESI) mass spectrometry
Three-dimensional (3D) mass spectrometry imaging (MSI) has become a growing frontier as it has the potential to provide a 3D representation of analytes in a label-free, untargeted, and chemically specific manner. The most common 3D MSI is accomplished by the reconstruction of 2D MSI from serial cryosections; however, this presents significant challenges in image alignment and registration. An alternative method would be to sequentially image a sample by consecutive ablation events to create a 3D image. In this study, we describe the use of infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) in ablation-based 3D MSI for analyses of lipids within fresh frozen skin tissue. Depth resolution using different laser energy levels was explored with a confocal laser scanning microscope to establish the imaging parameters for skin. The lowest and highest laser energy level resulted in a depth resolution of 7 μm and 18 μm, respectively. A total of 594 lipids were putatively detected and detailed lipid profiles across different skin layers were revealed in a 56-layer 3D imaging experiment. Correlated with histological information, the skin structure was characterized with differential lipid distributions with a lateral resolution of 50 μm and a z resolution of 7 μm.